Gamma function

ph
이동: 둘러보기, 검색

역시 위키[1]는 훌륭하다.


\( \Gamma (n)=(n-1)! \) where \(n\) is a positive integer.

\(\displaystyle \Gamma (z)=\int _{0}^{\infty }x^{z-1}e^{-x}\,dx\) for complex numbers with a positive real part.


\(\displaystyle \Gamma (z+1)=\int _{0}^{\infty }x^{z}e^{-x}\,dx\)

\(\displaystyle =\left[-x^{z}e^{-x}\right]_{0}^{\infty }+\int _{0}^{\infty }zx^{z-1}e^{-x}\,dx\)

\(\displaystyle =\lim _{x\to \infty }(-x^{z}e^{-x})-(0e^{-0})+z\int _{0}^{\infty }x^{z-1}e^{-x}\,dx\)

Recognizing that as \(\displaystyle x\to \infty ,-x^{z}e^{-x}\to 0,\)

\(\displaystyle =z\int _{0}^{\infty }x^{z-1}e^{-x}\,dx=z\Gamma (z)\)