"Machine Learning"의 두 판 사이의 차이
ph
잔글 (→general) |
잔글 (→general) |
||
14번째 줄: | 14번째 줄: | ||
* [https://arxiv.org/abs/1603.05027 Identity Mappings in Deep Residual Networks] arXiv:1603.05027 | * [https://arxiv.org/abs/1603.05027 Identity Mappings in Deep Residual Networks] arXiv:1603.05027 | ||
* [http://www.fast.ai/2017/07/28/deep-learning-part-two-launch/ cutting edge deeplearning for coders] | * [http://www.fast.ai/2017/07/28/deep-learning-part-two-launch/ cutting edge deeplearning for coders] | ||
+ | |||
+ | ==nets== | ||
+ | * [[AlexNet]] | ||
+ | * [[dilated cnn]] | ||
+ | * [[pathnet]] | ||
+ | * [[ResNet]] | ||
+ | * [[Fast RCNN]] | ||
+ | * [[Faster RCNN]] | ||
+ | * [[R-FCN]] | ||
+ | * [[GoogLeNet|Inception]] (GoogLeNet) | ||
+ | * [[fully convolutional networks]] | ||
+ | * [[FractalNets]] | ||
+ | * [[highway networks]] | ||
+ | * [[Memory networks]] | ||
+ | * [[DenseNet]] | ||
+ | * [[Network in Network|NIN]] | ||
+ | * [[Deeply Supervised Network|DSN]] | ||
+ | * [[Ladder Networks]] | ||
+ | * [[Deeply-Fused Nets|DFNs]] | ||
+ | * [[YOLO]] | ||
==general== | ==general== | ||
* [[CUDA기타설치]] | * [[CUDA기타설치]] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
* [[Learning to learn by GD by GD]] | * [[Learning to learn by GD by GD]] | ||
* [[Generative Models]] (GAN, VAE, etc) | * [[Generative Models]] (GAN, VAE, etc) |
2017년 8월 8일 (화) 00:11 판
by themes
ril
- https://medium.com/technologymadeeasy/the-best-explanation-of-convolutional-neural-networks-on-the-internet-fbb8b1ad5df8
- http://nmhkahn.github.io/Casestudy-CNN
- https://stats.stackexchange.com/questions/205150/how-do-bottleneck-architectures-work-in-neural-networks
- https://www.quora.com/What-exactly-is-the-degradation-problem-that-Deep-Residual-Networks-try-to-alleviate
- dl with torch
- bias 붙여버리면 inv는 어케 구하나? D=0되지 않나? 구할필요 없나?
- pytorch examples
- Identity Mappings in Deep Residual Networks arXiv:1603.05027
- cutting edge deeplearning for coders
nets
- AlexNet
- dilated cnn
- pathnet
- ResNet
- Fast RCNN
- Faster RCNN
- R-FCN
- Inception (GoogLeNet)
- fully convolutional networks
- FractalNets
- highway networks
- Memory networks
- DenseNet
- NIN
- DSN
- Ladder Networks
- DFNs
- YOLO
general
- CUDA기타설치
- Learning to learn by GD by GD
- Generative Models (GAN, VAE, etc)
- Batch Normalization
- Mean Average Precision
- Essential Cheat Sheets for Machine Learning and Deep Learning Engineers
- What is surrogate loss?
- Exponential Linear Unit
- Neural net이 working하지 않는 37가지 이유
- deconvolution
- Sparse coding
- MXNet Model Zoo