"Extended Euclidean algorithm"의 두 판 사이의 차이
ph
잔글 |
잔글 |
||
21번째 줄: | 21번째 줄: | ||
#(2, -9, 47) | #(2, -9, 47) | ||
</pre> | </pre> | ||
+ | as you can notice, this uses recursion, but the [https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm wiki]’s pseudo code does not. | ||
[https://en.m.wikipedia.org/wiki/Modular_multiplicative_inverse Modular multiplicative inverse]는 다음으로 구한다. | [https://en.m.wikipedia.org/wiki/Modular_multiplicative_inverse Modular multiplicative inverse]는 다음으로 구한다. |
2017년 8월 11일 (금) 16:02 판
python code is as follows,
def exteuclid(m, n, s0=1, s1=0, t0=0, t1=1): # s0 := s_{i-1} # s1 := s_i # t0 := t_{i-1} # t1 := t_i assert m>=n q = m/n r = m%n s = s0 - q*s1 t = t0 - q*t1 if r==0: return n, s1, t1 else: return exteuclid(n, r, s1, s, t1, t) #test #print exteuclid(240, 46) #(2, -9, 47)
as you can notice, this uses recursion, but the wiki’s pseudo code does not.
Modular multiplicative inverse는 다음으로 구한다.
def invmult(a, n): if a<n: a += n r, x, _ = exteuclid(a, n) # caution: if r>1, `a` is not invertible. if x<0: x += n return x #test #print invmult(234242, 11117) #coprime #10154
ref. coprime test