"0830 commoncode"의 두 판 사이의 차이
ph
(새 문서: $$ \frac{(a+b+c+\cdots+z)!}{a!b!c!\cdots z!} \pmod p$$ <pre> p = int(1e9)+7 def anmodp(a, n): if n==1: return a%p tmp = anmodp(a, n/2) if n%2==1: #odd re...) |
잔글 |
||
1번째 줄: | 1번째 줄: | ||
− | $$ \frac{(a+b+c+\cdots+z)!}{a!b!c!\cdots z!} \pmod p$$ | + | $$ \frac{(a+b+c+\cdots+z)!}{a!b!c!\cdots z!} \pmod p \text{ where } p \text{ is a prime}$$ |
<pre> | <pre> | ||
− | p = int(1e9)+7 | + | p = int(1e9)+7 #example. this is a prime number |
def anmodp(a, n): | def anmodp(a, n): | ||
if n==1: | if n==1: |
2017년 8월 30일 (수) 17:54 판
$$ \frac{(a+b+c+\cdots+z)!}{a!b!c!\cdots z!} \pmod p \text{ where } p \text{ is a prime}$$
p = int(1e9)+7 #example. this is a prime number def anmodp(a, n): if n==1: return a%p tmp = anmodp(a, n/2) if n%2==1: #odd return (a*(tmp**2))%p else: return (tmp**2)%p def fac(n): k = 1 for i in range(2, n+1): k *= i k %= p return k def invfac(n): return anmodp(fac(n), p-2) #euler totient def comb(x): # arr s = sum(x) ans = fac(s) for i in x: ans *= invfac(i) return ans % p