|
|
(같은 사용자의 중간 판 7개는 보이지 않습니다) |
3번째 줄: |
3번째 줄: |
| 뭘 이렇게들 만들어 대는지. [https://www.tensorflow.org tf]가 맘에 안들기는 하지만. | | 뭘 이렇게들 만들어 대는지. [https://www.tensorflow.org tf]가 맘에 안들기는 하지만. |
| | | |
− | ==Basics==
| + | [[Mxnet/Basics]] |
− | 걍 numpy를 쓰지 않는 이유는 cpu, gpu등 자유로이 알아서(?) 처리해주고, 병렬까지도 알아서(?) 한다고 함. [http://mxnet.io/tutorials/basic/ndarray.html] <del>tf도 해주지 않냐?</del>
| |
| | | |
− | {{c|broadcast}}[http://mxnet.io/tutorials/basic/ndarray.html#broadcast]: {{c|rep}}같은건가봄.
| + | [[Mxnet/Training and Inference]] |
| | | |
− | {{c|pickle.dump}}말고 {{c|mx.nd.load, mx.nd.save}}를 쓸 수 있다. [http://mxnet.io/tutorials/basic/ndarray.html#serialize-from-to-distributed-filesystems]
| + | ==etc== |
− | | + | * batch normalization example |
− | symbolic api를 설명[http://mxnet.io/tutorials/basic/symbol.html]하면서 중간에 장점이 하나 나오는데 이런게 있었네 싶었음. ㅎㅎ : 미리 그래프를 짜 놓으면 나중에 어떤 결과값이 필요할지 미리 알 수 있어서 계산중간값들을 모두 저장해둘 필요가 없다. 메모리가 절약됨.<br>
| + | <pre>def ConvFactory(data, num_filter, kernel, |
− | 관련해서, symbolic programming을 declarative programming이라고도 하고 이 반대를 imperative programming이라고 하는 모양. <del>imperative programming은 단어만 보면 이게 도대체 뭔소린가 싶었다.</del> Declarative programming의 예: regular expression, SQL.
| + | stride=(1,1), pad=(0, 0),name=None, suffix=''): |
− | | + | conv = mx.sym.Convolution(data=data, |
− | 매뉴얼 따라하다가 {{c|graphviz}}때문에 에러남
| + | num_filter=num_filter, |
− | ExecutableNotFound: failed to execute ['dot', '-Tsvg'], make sure the Graphviz executables are on your systems' PATH
| + | kernel=kernel, |
− | 맥이라 걍 포기. {{c|brew}}하면 된다는데 걍 안하고 원격 리눅스에서나. 시스템에도 있어야 하고, pip로도 있어야 한다.(우분투에서 {{c|apt ~}} 랑 {{c|pip install ~}} 다 해줘야 한다는 얘기)
| + | stride=stride, |
− | | + | pad=pad, |
− | bind → forward해서 output을 얻지 않고, 바로 eval할 수도 있다.
| + | name='conv_%s%s' %(name, suffix)) |
− | | + | bn = mx.sym.BatchNorm(data=conv, name='bn_%s%s' %(name, suffix)) |
− | <u>{{c|tojson()}}</u>
| + | act = mx.sym.Activation(data=bn, act_type='relu', name='relu_%s%s' |
− | print(c.tojson())
| + | %(name, suffix)) |
− | c.save('symbol-c.json')
| + | return act</pre> |
− | c2 = mx.sym.load('symbol-c.json')
| + | * feature extraction |
− | | + | **[https://github.com/dmlc/mxnet/blob/master/docs/tutorials/python/predict_image.md Predict with pre-trained models] |
− | type cast
| + | ** [http://mxnet.io/how_to/finetune.html#train How do I fine-tune pre-trained models to a new dataset?] |
− | a = mx.sym.Variable('data')
| |
− | b = mx.sym.cast(data=a, dtype='float16’)
| |
− | | |
− | ===Module=== | |
− | ====Creation====
| |
− | <pre>mod = mx.mod.Module(symbol=net, | |
− | context=mx.cpu(),
| |
− | data_names=['data'],
| |
− | label_names=['softmax_label' ])</pre>
| |
− | ====Intermediate-level Interface====
| |
− | 먼저 대강
| |
− | mx.test_utils.download
| |
− | np.genfromtxt
| |
− | ... # data와 label분리.
| |
− | mx.io.NDArrayIter # batch 분리
| |
− | ... # net만들고
| |
− | mod = mx.mod.Module(symbol=net, context=mx.cpu(), ...)
| |
− | 한 다음,
| |
− | <pre># memory alloc
| |
− | mod.bind(data_shapes=train_iter.provide_data, label_shapes=train_iter.provide_label)
| |
− | | |
− | mod.init_params(initializer=mx.init.Uniform(scale=.1))
| |
− | mod.init_optimizer(optimizer='sgd', optimizer_params=(('learning_rate', 0.1), ))
| |
− | metric = mx.metric.create('acc')
| |
− | | |
− | for epoch in range(5):
| |
− | train_iter.reset()
| |
− | metric.reset()
| |
− | for batch in train_iter:
| |
− | mod.forward(batch, is_train=True) # (1)
| |
− | mod.update_metric(metric, batch.label) # (2)
| |
− | mod.backward() # (3)
| |
− | mod.update()
| |
− | print('Epoch %d, Training %s' % (epoch, metric.get()))</pre>
| |
− | * (2)의 {{c|batch.label}}이 어디서 나오나 했는데 다음 section([http://mxnet.io/tutorials/basic/data.html iterators])에 보면 나온다.
| |
− | ** [http://mxnet.io/api/python/io.html#mxnet.io.DataBatch API문서]도 있음.
| |
− | * (2)에서 {{c|mod}}에 metric을 알려주므로, (3)에서 {{c|backward}}만 불러도, gradient계산한다.
| |
− | * metric.create에서 여러가지 할 수 있는데, [http://mxnet.io/api/python/metric.html mxnet.metric api]에서 볼 수 있다.
| |
− | ** {{c|Accuracy, TopKAccuracy, F1, Perplexity, MAE, MSE, RMSE, CrossEntropy, Loss, Torch, Caffe<ref>{{c|Loss, Torch, Caffe}}는 Dummy metrics</ref>, CustomMetric, np<ref>numpy array를 입력으로 받는 custom metric</ref>}}가 있다.
| |
− | ** {{c|acc}}등으로 줄여쓸 수 있는것 같은데 그것도 문서화 안된것 같다. {{c|acc}}(accuracy), {{c|top_k_acc}}(top-k-accuracy), {{c|ce}}(CrossEntropy) 가능함.[http://mxnet.io/tutorials/basic/module.html#predict-and-evaluate]
| |
− | * (1)의 {{c|forward}}에서 {{c|is_train}}은, undocumented인것 같다. 걍 train할때는 무조건 {{c|True}}주기로. 기본값은 {{c|None}}. [http://mxnet.io/api/python/module.html?highlight=module.for#mxnet.module.BaseModule.forward] [https://github.com/dmlc/mxnet/issues/1822]
| |
− | | |
− | ====High-level Interface====
| |
− | <pre>train_iter.reset()
| |
− | mod = mx.mod.Module(symbol=net, context=mx.cpu(), data_names=['data'], label_names=['softmax_label'])
| |
− | mod.fit(train_iter,
| |
− | eval_data=val_iter,
| |
− | optimizer='sgd',
| |
− | optimizer_params={'learning_rate':0.1},
| |
− | eval_metric='acc',
| |
− | num_epoch=8)
| |
− | </pre>
| |
− | <pre>y = mod.predict(val_iter)</pre>
| |
− | predict결과 없이 그냥 evaluation만 하려면,
| |
− | score = mod.score(val_iter, ['mse', ‘acc'])
| |
− | ====Save and Load====
| |
− | 체크포인트 설정
| |
− | model_prefix = 'mx_mlp'
| |
− | checkpoint = mx.callback.do_checkpoint(model_prefix)
| |
− | mod = mx.mod.Module(symbol=net)
| |
− | mod.fit(train_iter, num_epoch=5, epoch_end_callback=checkpoint)
| |
− | 불러오기
| |
− | sym, arg_params, aux_params = mx.model.load_checkpoint(model_prefix, 3) # 3:epoch
| |
− | 불러와서 다시 설정
| |
− | mod.set_params(arg_params, aux_params)
| |
− | Simply resume training.
| |
− | <pre>mod = mx.mod.Module(symbol=sym)
| |
− | mod.fit(train_iter,
| |
− | num_epoch=8,
| |
− | arg_params=arg_params,
| |
− | aux_params=aux_params,
| |
− | begin_epoch=3)
| |
− | </pre>
| |
− | | |
− | ===Iterators - Loading data===
| |
− | * Data iterator는 [http://mxnet.io/api/python/io.html#mxnet.io.DataBatch {{c|DataBatch}}]를 반환한다.
| |
− | * csv파일로부터 읽기: [http://mxnet.io/api/python/io.html#mxnet.io.CSVIter {{c|CSVIter}}]
| |
− | * custom iterator도 지원한다.
| |
− | * {{c|mx.image}}쓰려면 OpenCV있어야 한다.(CV2 아니다)
| |
− | * {{c|ImageRecordIter}}나 {{c|ImageIter}}를 사용해서 이미지파일 데이터를 학습데이터로 쓸 수 있다. 이때 {{c|RecoredIO}}파일 미리 있어야 한다.
| |
− | * 학습할때 뿐 아니라 score계산할때도 iterator쓴다.
| |
− | <pre>eval_iter = mx.io.NDArrayIter(eval_data, eval_label, batch_size, shuffle=False)
| |
− | model.score(eval_iter, metric)</pre>
| |
− | | |
− | ==Training and Inference==
| |
− | | |
− | ===Linear Regression===
| |
− | [http://mxnet.io/tutorials/python/linear-regression.html#linear-regression 원문]
| |
− | <br>전체 소스
| |
− | <pre>import mxnet as mx
| |
− | import numpy as np
| |
− | | |
− | #Training data
| |
− | train_data = np.random.uniform(0, 1, [100, 2])
| |
− | train_label = np.array([train_data[i][0] + 2 * train_data[i][1] for i in range(100)])
| |
− | batch_size = 1
| |
− | | |
− | #Evaluation Data
| |
− | eval_data = np.array([[7,2],[6,10],[12,2]])
| |
− | eval_label = np.array([11,26,16])
| |
− | | |
− | train_iter = mx.io.NDArrayIter(train_data,train_label, batch_size, shuffle=True,label_name='lin_reg_label') #(1)
| |
− | eval_iter = mx.io.NDArrayIter(eval_data, eval_label, batch_size, shuffle=False)
| |
− | | |
− | X = mx.sym.Variable('data')
| |
− | Y = mx.symbol.Variable('lin_reg_label') #(2)
| |
− | fully_connected_layer = mx.sym.FullyConnected(data=X, name='fc1', num_hidden = 1)
| |
− | lro = mx.sym.LinearRegressionOutput(data=fully_connected_layer, label=Y, name="lro") #(3)
| |
− | | |
− | model = mx.mod.Module(
| |
− | symbol = lro ,
| |
− | data_names=['data'],
| |
− | label_names = ['lin_reg_label']# network structure (4)
| |
− | )
| |
− | | |
− | mx.viz.plot_network(symbol=lro)
| |
− | # (5)
| |
− | model.fit(train_iter, eval_iter,
| |
− | optimizer_params={'learning_rate':0.005, 'momentum': 0.9},
| |
− | num_epoch=1000,
| |
− | batch_end_callback = mx.callback.Speedometer(batch_size, 2))
| |
− | | |
− | model.predict(eval_iter).asnumpy()
| |
− | | |
− | metric = mx.metric.MSE()
| |
− | model.score(eval_iter, metric)
| |
− | | |
− | eval_data = np.array([[7,2],[6,10],[12,2]])
| |
− | eval_label = np.array([11.1,26.1,16.1]) #Adding 0.1 to each of the values
| |
− | eval_iter = mx.io.NDArrayIter(eval_data, eval_label, batch_size, shuffle=False)
| |
− | model.score(eval_iter, metric)</pre>
| |
− | | |
− | (3) {{c| mx.sym.LinearRegressionOutput}}은 l2 loss계산함. <br>
| |
− | <i>(1),(2)에서 {{c|lin_reg_label}}이라고 준 것과 {{c|NDArrayIter}}에서 이름이 일치해야 한다.</i> <code>train_iter = mx.io.NDArrayIter(..., label_name='<span style="color:red">lin_reg_label</span>' ) </code> <i> 다시말해, 입력단의 이름이 일치해야 한다는 얘기. 결국 (4)에 나오는 이름까지 일치해야 해서 같은 이름이 세번 나온다</i>
| |
− | | |
− | (5)의 {{c|model.fit}}에서 {{c|batch_end_callback}}으로 <code>[http://mxnet.io/api/python/callback.html?highlight=ck.speedometer#mxnet.callback.Speedometer mx.callback.Speedometer]</code>줄 수 있다.
| |
− | *<code>Speedometer(batch_size, frequent=50, auto_reset=True)</code> : 배치 50번마다 로깅하고, 로깅 후 reset할것. 아래를 미리 해줘야 stdout에 보인다.
| |
− | <pre>import logging
| |
− | logging.getLogger().setLevel(logging.DEBUG)</pre>
| |
− | 실행해보면,
| |
− | <pre>>>> # Print training speed and evaluation metrics every ten batches. Batch size is one.
| |
− | >>> module.fit(iterator, num_epoch=n_epoch,
| |
− | ... batch_end_callback=mx.callback.Speedometer(1, 10))
| |
− | Epoch[0] Batch [10] Speed: 1910.41 samples/sec Train-accuracy=0.200000
| |
− | Epoch[0] Batch [20] Speed: 1764.83 samples/sec Train-accuracy=0.400000
| |
− | Epoch[0] Batch [30] Speed: 1740.59 samples/sec Train-accuracy=0.500000</pre>
| |
− | | |
− | ===Handwritten Digit Recognition===
| |
− | [http://mxnet.io/tutorials/python/mnist.html#handwritten-digit-recognition 원문] | |
− | <div class="toccolours mw-collapsible mw-collapsed">
| |
− | ====full src====
| |
− | <div class=mw-collapsible-content>
| |
− | <pre>
| |
− | import mxnet as mx
| |
− | mnist = mx.test_utils.get_mnist()
| |
− | | |
− | batch_size = 100
| |
− | train_iter = mx.io.NDArrayIter(mnist['train_data'], mnist['train_label'], batch_size, shuffle=True)
| |
− | val_iter = mx.io.NDArrayIter(mnist['test_data'], mnist['test_label'], batch_size)
| |
− | | |
− | data = mx.sym.var('data')
| |
− | # Flatten the data from 4-D shape into 2-D (batch_size, num_channel*width*height)
| |
− | data = mx.sym.flatten(data=data)
| |
− | | |
− | # The first fully-connected layer and the corresponding activation function
| |
− | fc1 = mx.sym.FullyConnected(data=data, num_hidden=128)
| |
− | act1 = mx.sym.Activation(data=fc1, act_type="relu")
| |
− | | |
− | # The second fully-connected layer and the corresponding activation function
| |
− | fc2 = mx.sym.FullyConnected(data=act1, num_hidden = 64)
| |
− | act2 = mx.sym.Activation(data=fc2, act_type="relu")
| |
− | | |
− | # MNIST has 10 classes
| |
− | fc3 = mx.sym.FullyConnected(data=act2, num_hidden=10)
| |
− | # Softmax with cross entropy loss
| |
− | mlp = mx.sym.SoftmaxOutput(data=fc3, name='softmax')
| |
− | | |
− | import logging
| |
− | logging.getLogger().setLevel(logging.DEBUG) # logging to stdout
| |
− | # create a trainable module on CPU
| |
− | mlp_model = mx.mod.Module(symbol=mlp, context=mx.cpu())
| |
− | mlp_model.fit(train_iter, # train data
| |
− | eval_data=val_iter, # validation data
| |
− | optimizer='sgd', # use SGD to train
| |
− | optimizer_params={'learning_rate':0.1}, # use fixed learning rate
| |
− | eval_metric='acc', # report accuracy during training
| |
− | batch_end_callback = mx.callback.Speedometer(batch_size, 100), # output progress for each 100 data batches
| |
− | num_epoch=10) # train for at most 10 dataset passes
| |
− | | |
− | test_iter = mx.io.NDArrayIter(mnist['test_data'], None, batch_size)
| |
− | prob = mlp_model.predict(test_iter)
| |
− | assert prob.shape == (10000, 10)
| |
− | | |
− | test_iter = mx.io.NDArrayIter(mnist['test_data'], mnist['test_label'], batch_size)
| |
− | # predict accuracy of mlp
| |
− | acc = mx.metric.Accuracy()
| |
− | mlp_model.score(test_iter, acc)
| |
− | print(acc)
| |
− | assert acc.get()[1] > 0.96
| |
− | | |
− | data = mx.sym.var('data')
| |
− | # first conv layer
| |
− | conv1 = mx.sym.Convolution(data=data, kernel=(5,5), num_filter=20)
| |
− | tanh1 = mx.sym.Activation(data=conv1, act_type="tanh")
| |
− | pool1 = mx.sym.Pooling(data=tanh1, pool_type="max", kernel=(2,2), stride=(2,2))
| |
− | # second conv layer
| |
− | conv2 = mx.sym.Convolution(data=pool1, kernel=(5,5), num_filter=50)
| |
− | tanh2 = mx.sym.Activation(data=conv2, act_type="tanh")
| |
− | pool2 = mx.sym.Pooling(data=tanh2, pool_type="max", kernel=(2,2), stride=(2,2))
| |
− | # first fullc layer
| |
− | flatten = mx.sym.flatten(data=pool2)
| |
− | fc1 = mx.symbol.FullyConnected(data=flatten, num_hidden=500)
| |
− | tanh3 = mx.sym.Activation(data=fc1, act_type="tanh")
| |
− | # second fullc
| |
− | fc2 = mx.sym.FullyConnected(data=tanh3, num_hidden=10)
| |
− | # softmax loss
| |
− | lenet = mx.sym.SoftmaxOutput(data=fc2, name='softmax')
| |
− | | |
− | # create a trainable module on GPU 0
| |
− | lenet_model = mx.mod.Module(symbol=lenet, context=mx.cpu())
| |
− | # train with the same
| |
− | lenet_model.fit(train_iter,
| |
− | eval_data=val_iter,
| |
− | optimizer='sgd',
| |
− | optimizer_params={'learning_rate':0.1},
| |
− | eval_metric='acc',
| |
− | batch_end_callback = mx.callback.Speedometer(batch_size, 100),
| |
− | num_epoch=10)
| |
− | | |
− | test_iter = mx.io.NDArrayIter(mnist['test_data'], None, batch_size)
| |
− | prob = lenet_model.predict(test_iter)
| |
− | test_iter = mx.io.NDArrayIter(mnist['test_data'], mnist['test_label'], batch_size)
| |
− | # predict accuracy for lenet
| |
− | acc = mx.metric.Accuracy()
| |
− | lenet_model.score(test_iter, acc)
| |
− | print(acc)
| |
− | assert acc.get()[1] > 0.98
| |
− | </pre></div></div>
| |
− | | |
− | ====Loading data====
| |
− | <pre>
| |
− | mx.test_utils.get_mnist()
| |
− | </pre>
| |
− | 이 뒤로는 trivial.
| |
− | | |
− | ===Predict with pre-trained models===
| |
− | | |
− | ===Large Scale Image Classification===
| |