"Mxnet"의 두 판 사이의 차이

ph
이동: 둘러보기, 검색
잔글 (→‎etc)
 
(같은 사용자의 중간 판 6개는 보이지 않습니다)
3번째 줄: 3번째 줄:
 
뭘 이렇게들 만들어 대는지. [https://www.tensorflow.org tf]가 맘에 안들기는 하지만.
 
뭘 이렇게들 만들어 대는지. [https://www.tensorflow.org tf]가 맘에 안들기는 하지만.
  
==Training and Inference==
+
[[Mxnet/Basics]]
  
===Linear Regression===
+
[[Mxnet/Training and Inference]]
[http://mxnet.io/tutorials/python/linear-regression.html#linear-regression 원문]
 
<br>전체 소스
 
<pre>import mxnet as mx
 
import numpy as np
 
  
#Training data
+
==etc==
train_data = np.random.uniform(0, 1, [100, 2])
+
* batch normalization example
train_label = np.array([train_data[i][0] + 2 * train_data[i][1] for i in range(100)])
+
<pre>def ConvFactory(data, num_filter, kernel,  
batch_size = 1
+
                stride=(1,1), pad=(0, 0),name=None, suffix=''):
 
+
    conv = mx.sym.Convolution(data=data,
#Evaluation Data
+
                  num_filter=num_filter,
eval_data = np.array([[7,2],[6,10],[12,2]])
+
                  kernel=kernel,
eval_label = np.array([11,26,16])
+
                  stride=stride,
 
+
                  pad=pad,
train_iter = mx.io.NDArrayIter(train_data,train_label, batch_size, shuffle=True,label_name='lin_reg_label')           #(1)
+
                  name='conv_%s%s' %(name, suffix))
eval_iter = mx.io.NDArrayIter(eval_data, eval_label, batch_size, shuffle=False)
+
    bn = mx.sym.BatchNorm(data=conv, name='bn_%s%s' %(name, suffix))
 
+
    act = mx.sym.Activation(data=bn, act_type='relu', name='relu_%s%s'
X = mx.sym.Variable('data')
+
                  %(name, suffix))
Y = mx.symbol.Variable('lin_reg_label')        #(2)
+
    return act</pre>
fully_connected_layer  = mx.sym.FullyConnected(data=X, name='fc1', num_hidden = 1)
+
* feature extraction
lro = mx.sym.LinearRegressionOutput(data=fully_connected_layer, label=Y, name="lro")            #(3)
+
**[https://github.com/dmlc/mxnet/blob/master/docs/tutorials/python/predict_image.md Predict with pre-trained models]
 
+
** [http://mxnet.io/how_to/finetune.html#train How do I fine-tune pre-trained models to a new dataset?]
model = mx.mod.Module(
 
    symbol = lro ,
 
    data_names=['data'],
 
    label_names = ['lin_reg_label']# network structure      (4)
 
)
 
 
 
mx.viz.plot_network(symbol=lro)
 
# (5)
 
model.fit(train_iter, eval_iter,
 
            optimizer_params={'learning_rate':0.005, 'momentum': 0.9},
 
            num_epoch=1000,
 
            batch_end_callback = mx.callback.Speedometer(batch_size, 2))
 
 
 
model.predict(eval_iter).asnumpy()
 
 
 
metric = mx.metric.MSE()
 
model.score(eval_iter, metric)
 
 
 
eval_data = np.array([[7,2],[6,10],[12,2]])
 
eval_label = np.array([11.1,26.1,16.1]) #Adding 0.1 to each of the values
 
eval_iter = mx.io.NDArrayIter(eval_data, eval_label, batch_size, shuffle=False)
 
model.score(eval_iter, metric)</pre>
 
 
 
(3) {{c| mx.sym.LinearRegressionOutput}}은 l2 loss계산함. <br>
 
<i>(1),(2)에서 {{c|lin_reg_label}}이라고 준 것과 {{c|NDArrayIter}}에서 이름이 일치해야 한다.</i> <code>train_iter = mx.io.NDArrayIter(..., label_name='<span style="color:red">lin_reg_label</span>'  ) </code> <i> 다시말해, 입력단의 이름이 일치해야 한다는 얘기. 결국 (4)에 나오는 이름까지 일치해야 해서 같은 이름이 세번 나온다</i>
 
 
 
(5)의 {{c|model.fit}}에서 {{c|batch_end_callback}}으로 <code>[http://mxnet.io/api/python/callback.html?highlight=ck.speedometer#mxnet.callback.Speedometer mx.callback.Speedometer]</code>줄 수 있다.
 
*<code>Speedometer(batch_size, frequent=50, auto_reset=True)</code> : 배치 50번마다 로깅하고, 로깅 후 reset할것. 아래를 미리 해줘야 stdout에 보인다.
 
<pre>import logging
 
logging.getLogger().setLevel(logging.DEBUG)</pre>
 
실행해보면,
 
<pre>>>> # Print training speed and evaluation metrics every ten batches. Batch size is one.
 
>>> module.fit(iterator, num_epoch=n_epoch,
 
... batch_end_callback=mx.callback.Speedometer(1, 10))
 
Epoch[0] Batch [10] Speed: 1910.41 samples/sec  Train-accuracy=0.200000
 
Epoch[0] Batch [20] Speed: 1764.83 samples/sec  Train-accuracy=0.400000
 
Epoch[0] Batch [30] Speed: 1740.59 samples/sec  Train-accuracy=0.500000</pre>
 
 
 
===Handwritten Digit Recognition===
 
[http://mxnet.io/tutorials/python/mnist.html#handwritten-digit-recognition 원문]
 
<div class="toccolours mw-collapsible mw-collapsed">
 
====full src====
 
<div class=mw-collapsible-content>
 
<pre>
 
import mxnet as mx
 
mnist = mx.test_utils.get_mnist()
 
 
 
batch_size = 100
 
train_iter = mx.io.NDArrayIter(mnist['train_data'], mnist['train_label'], batch_size, shuffle=True)
 
val_iter = mx.io.NDArrayIter(mnist['test_data'], mnist['test_label'], batch_size)
 
 
 
data = mx.sym.var('data')
 
# Flatten the data from 4-D shape into 2-D (batch_size, num_channel*width*height)
 
data = mx.sym.flatten(data=data)
 
 
 
# The first fully-connected layer and the corresponding activation function
 
fc1  = mx.sym.FullyConnected(data=data, num_hidden=128)
 
act1 = mx.sym.Activation(data=fc1, act_type="relu")
 
 
 
# The second fully-connected layer and the corresponding activation function
 
fc2  = mx.sym.FullyConnected(data=act1, num_hidden = 64)
 
act2 = mx.sym.Activation(data=fc2, act_type="relu")
 
 
 
# MNIST has 10 classes
 
fc3  = mx.sym.FullyConnected(data=act2, num_hidden=10)
 
# Softmax with cross entropy loss
 
mlp  = mx.sym.SoftmaxOutput(data=fc3, name='softmax')
 
 
 
import logging
 
logging.getLogger().setLevel(logging.DEBUG)  # logging to stdout
 
# create a trainable module on CPU
 
mlp_model = mx.mod.Module(symbol=mlp, context=mx.cpu())
 
mlp_model.fit(train_iter,  # train data
 
              eval_data=val_iter,  # validation data
 
              optimizer='sgd',  # use SGD to train
 
              optimizer_params={'learning_rate':0.1},  # use fixed learning rate
 
              eval_metric='acc',  # report accuracy during training
 
              batch_end_callback = mx.callback.Speedometer(batch_size, 100), # output progress for each 100 data batches
 
              num_epoch=10)  # train for at most 10 dataset passes
 
 
 
test_iter = mx.io.NDArrayIter(mnist['test_data'], None, batch_size)
 
prob = mlp_model.predict(test_iter)
 
assert prob.shape == (10000, 10)
 
 
 
test_iter = mx.io.NDArrayIter(mnist['test_data'], mnist['test_label'], batch_size)
 
# predict accuracy of mlp
 
acc = mx.metric.Accuracy()
 
mlp_model.score(test_iter, acc)
 
print(acc)
 
assert acc.get()[1] > 0.96
 
 
 
data = mx.sym.var('data')
 
# first conv layer
 
conv1 = mx.sym.Convolution(data=data, kernel=(5,5), num_filter=20)
 
tanh1 = mx.sym.Activation(data=conv1, act_type="tanh")
 
pool1 = mx.sym.Pooling(data=tanh1, pool_type="max", kernel=(2,2), stride=(2,2))
 
# second conv layer
 
conv2 = mx.sym.Convolution(data=pool1, kernel=(5,5), num_filter=50)
 
tanh2 = mx.sym.Activation(data=conv2, act_type="tanh")
 
pool2 = mx.sym.Pooling(data=tanh2, pool_type="max", kernel=(2,2), stride=(2,2))
 
# first fullc layer
 
flatten = mx.sym.flatten(data=pool2)
 
fc1 = mx.symbol.FullyConnected(data=flatten, num_hidden=500)
 
tanh3 = mx.sym.Activation(data=fc1, act_type="tanh")
 
# second fullc
 
fc2 = mx.sym.FullyConnected(data=tanh3, num_hidden=10)
 
# softmax loss
 
lenet = mx.sym.SoftmaxOutput(data=fc2, name='softmax')
 
 
 
# create a trainable module on GPU 0
 
lenet_model = mx.mod.Module(symbol=lenet, context=mx.cpu())
 
# train with the same
 
lenet_model.fit(train_iter,
 
                eval_data=val_iter,
 
                optimizer='sgd',
 
                optimizer_params={'learning_rate':0.1},
 
                eval_metric='acc',
 
                batch_end_callback = mx.callback.Speedometer(batch_size, 100),
 
                num_epoch=10)
 
 
 
test_iter = mx.io.NDArrayIter(mnist['test_data'], None, batch_size)
 
prob = lenet_model.predict(test_iter)
 
test_iter = mx.io.NDArrayIter(mnist['test_data'], mnist['test_label'], batch_size)
 
# predict accuracy for lenet
 
acc = mx.metric.Accuracy()
 
lenet_model.score(test_iter, acc)
 
print(acc)
 
assert acc.get()[1] > 0.98
 
</pre></div></div>
 
 
 
====Loading data====
 
<pre>
 
mx.test_utils.get_mnist()
 
</pre>
 
이 뒤로는 trivial.
 
 
 
===Predict with pre-trained models===
 
 
 
===Large Scale Image Classification===
 

2017년 7월 4일 (화) 19:06 기준 최신판

http://mxnet.io

뭘 이렇게들 만들어 대는지. tf가 맘에 안들기는 하지만.

Mxnet/Basics

Mxnet/Training and Inference

etc

  • batch normalization example
def ConvFactory(data, num_filter, kernel, 
                stride=(1,1), pad=(0, 0),name=None, suffix=''):
    conv = mx.sym.Convolution(data=data,
                  num_filter=num_filter,
                  kernel=kernel,
                  stride=stride,
                  pad=pad,
                  name='conv_%s%s' %(name, suffix))
    bn = mx.sym.BatchNorm(data=conv, name='bn_%s%s' %(name, suffix))
    act = mx.sym.Activation(data=bn, act_type='relu', name='relu_%s%s'
                  %(name, suffix))
    return act