"0830 commoncode"의 두 판 사이의 차이
ph
잔글 |
잔글 |
||
| (같은 사용자의 중간 판 하나는 보이지 않습니다) | |||
| 1번째 줄: | 1번째 줄: | ||
$$ \frac{(a+b+c+\cdots+z)!}{a!b!c!\cdots z!} \pmod p \text{ where } p \text{ is a prime}$$ | $$ \frac{(a+b+c+\cdots+z)!}{a!b!c!\cdots z!} \pmod p \text{ where } p \text{ is a prime}$$ | ||
| − | Above value is always integer. Refer [https://math.stackexchange.com/questions/2158/division-of-factorials the proofs]. The key observation is that the product of \(n\) consecutive integers is divisible by \(n!\).<ref> This can be proved by induction. [https://math.stackexchange.com/a/2171/64186]. And maybe possible | + | Above value is always integer. Refer [https://math.stackexchange.com/questions/2158/division-of-factorials the proofs]. The key observation is that the product of \(n\) consecutive integers is divisible by \(n!\).<ref> This can be proved by induction. [https://math.stackexchange.com/a/2171/64186]. And maybe possible by group theory</ref> |
<pre> | <pre> | ||
p = int(1e9)+7 #example. this is a prime number | p = int(1e9)+7 #example. this is a prime number | ||
| 32번째 줄: | 32번째 줄: | ||
</pre> | </pre> | ||
| + | |||
| + | <references/> | ||
<disqus/> | <disqus/> | ||
2017년 8월 30일 (수) 22:47 기준 최신판
$$ \frac{(a+b+c+\cdots+z)!}{a!b!c!\cdots z!} \pmod p \text{ where } p \text{ is a prime}$$
Above value is always integer. Refer the proofs. The key observation is that the product of \(n\) consecutive integers is divisible by \(n!\).[1]
p = int(1e9)+7 #example. this is a prime number
def anmodp(a, n): # a^n mod p
if n==1:
return a%p
tmp = anmodp(a, n/2)
if n%2==1: #odd
return (a*(tmp**2))%p
else:
return (tmp**2)%p
def fac(n): # n! mod p
k = 1
for i in range(2, n+1):
k *= i
k %= p
return k
def invfac(n): # 1/(n!) (mod p)
return anmodp(fac(n), p-2) #euler totient
def comb(x): # input = int array
s = sum(x)
ans = fac(s)
for i in x:
ans *= invfac(i)
return ans % p