"1 million factorial"의 두 판 사이의 차이
ph
								
												
				 (Do you know each other?  <a href=" http://myhomeclipsyu.blogage.de/ ">myhomeclips
</a>  :-OOO <a href=" http://silverdaddiesqyf.blogage.de/ ">silverdaddies
</a>  8OOO <a href=" http://worldsexqip.blog)  | 
				|||
| (사용자 100명 이상의 중간 판 575개는 보이지 않습니다) | |||
| 1번째 줄: | 1번째 줄: | ||
| − | + | #ril https://www.quora.com/What-is-an-efficient-algorithm-to-find-the-factorial-of-huge-numbers-which-lie-in-the-range-100000-1000000  | |
| − | </  | + | |
| − | <  | + | == just by using [http://www.manpagez.com/man/1/bc/ bc] ==  | 
| − | </  | + | rewrote a factorial function not to use recursive calling.  | 
| − | + | <syntaxhighlight lang="c">  | |
| − | + | define g(x) {  | |
| + |     answer=1;  | ||
| + |     for(i=1;i<x+1;i++) {  | ||
| + |         answer *= i;  | ||
| + |     }  | ||
| + |     return answer;  | ||
| + | }  | ||
| + | |||
| + | g(1000000);  | ||
| + | </syntaxhighlight>  | ||
| + | real    578m28.905s<br>  | ||
| + | user    450m56.192s<br>  | ||
| + | sys     12m33.006s<br>  | ||
| + | (with poor computing power (centOS virtual machine on windows7. i5 processor))  | ||
| + | 5,565,709 digits starting <div style='word-wrap: break-word;'>82639316883312400623766461031726662911353479789638730451677758855633796110356450844465305113114639733516068042108785885414647469506478361823012109754232995901156417462491737988838926919341417654578323931987280247219893964365444552161533920583519938798941774206240841593987701818807223169252057737128436859815222389311521255279546829742282164292748493887784712443572285950934362117645254493052265841197629905619012120241419002534128319433065076207004051595915117186613844750900755834037427137686877042093751023502633401248341314910217684549431273636399066971952961345733318557782792616690299056202054369409707066647851950401003675381978549679950259346666425613978573559764142083506… </div>ending with 249,998 zeros(about 4.49% of the whole digits)  | ||
| + | * more easy way to get the number of trailing zeros(from [http://answers.yahoo.com/question/index?qid=20071017145425AAaGkd2 here])  | ||
| + | <blockquote>  | ||
| + | Every multiple of 5 contributes a zero.<br>  | ||
| + | Every multiple of 25 contributes a second zero<br>  | ||
| + | Every multiple of 125 contributes a third zero<br>  | ||
| + | Every multiple of 625 contributes a fourth zero<br>  | ||
| + | etc.<br>  | ||
| + | <br>  | ||
| + | floor(1000000/5) + floor(1000000/25) + ... floor(1000000/5^8)<br>  | ||
| + | = 200,000 + 40,000 + 8,000 +1,600 +320 + 64 +12 + 2 <br>  | ||
| + | = 249,998 trailing zeros  | ||
| + | </blockquote>  | ||
| + | * someone can get this in about only 10sec!! [http://www.makewebgames.com/showthread.php/24362-Factorial-Program-in-C-1-Million-Factorial here]<br>He's saying he used FFT  | ||
| + | == ref ==  | ||
| + | http://www.luschny.de/math/factorial/FastFactorialFunctions.htm  | ||
| + | |||
| + | http://www.luschny.de/math/factorial/csharp/FactorialPrimeSwing.cs.html  | ||
| + | |||
| + | http://answers.google.com/answers/threadview/id/509662.html  | ||
| + | |||
| + | http://en.wikipedia.org/wiki/Elliptic_curve_factorization  | ||
2017년 6월 19일 (월) 12:19 기준 최신판
just by using bc
rewrote a factorial function not to use recursive calling.
define g(x) {
    answer=1;
    for(i=1;i<x+1;i++) {
        answer *= i;
    }
    return answer;
}
g(1000000);
real    578m28.905s
user    450m56.192s
sys     12m33.006s
(with poor computing power (centOS virtual machine on windows7. i5 processor))
5,565,709 digits starting
82639316883312400623766461031726662911353479789638730451677758855633796110356450844465305113114639733516068042108785885414647469506478361823012109754232995901156417462491737988838926919341417654578323931987280247219893964365444552161533920583519938798941774206240841593987701818807223169252057737128436859815222389311521255279546829742282164292748493887784712443572285950934362117645254493052265841197629905619012120241419002534128319433065076207004051595915117186613844750900755834037427137686877042093751023502633401248341314910217684549431273636399066971952961345733318557782792616690299056202054369409707066647851950401003675381978549679950259346666425613978573559764142083506… 
ending with 249,998 zeros(about 4.49% of the whole digits)
- more easy way to get the number of trailing zeros(from here)
 
Every multiple of 5 contributes a zero.
Every multiple of 25 contributes a second zero
Every multiple of 125 contributes a third zero
Every multiple of 625 contributes a fourth zero
etc.
floor(1000000/5) + floor(1000000/25) + ... floor(1000000/5^8)
= 200,000 + 40,000 + 8,000 +1,600 +320 + 64 +12 + 2
= 249,998 trailing zeros
- someone can get this in about only 10sec!! here
He's saying he used FFT 
ref
http://www.luschny.de/math/factorial/FastFactorialFunctions.htm
http://www.luschny.de/math/factorial/csharp/FactorialPrimeSwing.cs.html