"1 million factorial"의 두 판 사이의 차이

ph
이동: 둘러보기, 검색
(Who do you work for? <a href=" http://naodikesibo.blog4ever.com/blog/lire-article-671372-8753007-elite_nymphets.html ">Elite Nymphets </a> =-P <a href=" http://uuturymyjura.blog4ever.com/blog/lire-ar)
 
(사용자 100명 이상의 중간 판 492개는 보이지 않습니다)
1번째 줄: 1번째 줄:
Who do you work for? <a href=" http://naodikesibo.blog4ever.com/blog/lire-article-671372-8753007-elite_nymphets.html ">Elite Nymphets
+
#ril https://www.quora.com/What-is-an-efficient-algorithm-to-find-the-factorial-of-huge-numbers-which-lie-in-the-range-100000-1000000
</a>  =-P <a href=" http://uuturymyjura.blog4ever.com/blog/lire-article-671369-8752987-ukranian_nymphets.html ">Ukranian Nymphets
+
 
</a> 4972 <a href=" http://toanodadomap.blog4ever.com/blog/lire-article-671373-8753014-nymphet_lolitas.html ">Nymphet Lolitas
+
== just by using [http://www.manpagez.com/man/1/bc/ bc] ==
</a> >:-OOO <a href=" http://aebebyeok.blog4ever.com/blog/lire-article-671375-8753029-nymphet_tube.html ">Nymphet Tube
+
rewrote a factorial function not to use recursive calling.
</a> 4242 <a href=" http://nuqacuyyrek.blog4ever.com/blog/lire-article-671368-8752983-nymphet_galleries.html ">Nymphet Galleries
+
<syntaxhighlight lang="c">
</a> zpc <a href=" http://umymogatumu.blog4ever.com/blog/lire-article-671374-8753021-sexy_nymphets.html ">Sexy Nymphets
+
define g(x) {
</a>  276866 <a href=" http://hikieheou.blog4ever.com/blog/lire-article-671367-8752972-astral_nymphets.html ">Astral Nymphets
+
    answer=1;
</a>  1621 <a href=" http://lynagotejuh.blog4ever.com/blog/lire-article-671370-8752993-teen_nymphets.html ">Teen Nymphets
+
    for(i=1;i<x+1;i++) {
</a>  >:] <a href=" http://biryniraqusi.blog4ever.com/blog/lire-article-671366-8752958-non_nude_nymphets.html ">Non Nude Nymphets
+
        answer *= i;
</a>  252 <a href=" http://puqeomapifec.blog4ever.com/blog/lire-article-671371-8753002-young_nude_nymphets.html ">Young Nude Nymphets
+
    }
</a>  :]]]
+
    return answer;
 +
}
 +
 
 +
g(1000000);
 +
</syntaxhighlight>
 +
real    578m28.905s<br>
 +
user    450m56.192s<br>
 +
sys    12m33.006s<br>
 +
(with poor computing power (centOS virtual machine on windows7. i5 processor))
 +
5,565,709 digits starting <div style='word-wrap: break-word;'>82639316883312400623766461031726662911353479789638730451677758855633796110356450844465305113114639733516068042108785885414647469506478361823012109754232995901156417462491737988838926919341417654578323931987280247219893964365444552161533920583519938798941774206240841593987701818807223169252057737128436859815222389311521255279546829742282164292748493887784712443572285950934362117645254493052265841197629905619012120241419002534128319433065076207004051595915117186613844750900755834037427137686877042093751023502633401248341314910217684549431273636399066971952961345733318557782792616690299056202054369409707066647851950401003675381978549679950259346666425613978573559764142083506&hellip; </div>ending with 249,998 zeros(about 4.49% of the whole digits)
 +
* more easy way to get the number of trailing zeros(from [http://answers.yahoo.com/question/index?qid=20071017145425AAaGkd2 here])
 +
<blockquote>
 +
Every multiple of 5 contributes a zero.<br>
 +
Every multiple of 25 contributes a second zero<br>
 +
Every multiple of 125 contributes a third zero<br>
 +
Every multiple of 625 contributes a fourth zero<br>
 +
etc.<br>
 +
<br>
 +
floor(1000000/5) + floor(1000000/25) + ... floor(1000000/5^8)<br>
 +
= 200,000 + 40,000 + 8,000 +1,600 +320 + 64 +12 + 2 <br>
 +
= 249,998 trailing zeros
 +
</blockquote>
 +
* someone can get this in about only 10sec!! [http://www.makewebgames.com/showthread.php/24362-Factorial-Program-in-C-1-Million-Factorial here]<br>He's saying he used FFT
 +
== ref ==
 +
http://www.luschny.de/math/factorial/FastFactorialFunctions.htm
 +
 
 +
http://www.luschny.de/math/factorial/csharp/FactorialPrimeSwing.cs.html
 +
 
 +
http://answers.google.com/answers/threadview/id/509662.html
 +
 
 +
http://en.wikipedia.org/wiki/Elliptic_curve_factorization

2017년 6월 19일 (월) 12:19 기준 최신판

  1. ril https://www.quora.com/What-is-an-efficient-algorithm-to-find-the-factorial-of-huge-numbers-which-lie-in-the-range-100000-1000000

just by using bc

rewrote a factorial function not to use recursive calling.

define g(x) {
    answer=1;
    for(i=1;i<x+1;i++) {
        answer *= i;
    }
    return answer;
}

g(1000000);

real 578m28.905s
user 450m56.192s
sys 12m33.006s
(with poor computing power (centOS virtual machine on windows7. i5 processor))

5,565,709 digits starting

82639316883312400623766461031726662911353479789638730451677758855633796110356450844465305113114639733516068042108785885414647469506478361823012109754232995901156417462491737988838926919341417654578323931987280247219893964365444552161533920583519938798941774206240841593987701818807223169252057737128436859815222389311521255279546829742282164292748493887784712443572285950934362117645254493052265841197629905619012120241419002534128319433065076207004051595915117186613844750900755834037427137686877042093751023502633401248341314910217684549431273636399066971952961345733318557782792616690299056202054369409707066647851950401003675381978549679950259346666425613978573559764142083506…

ending with 249,998 zeros(about 4.49% of the whole digits)

  • more easy way to get the number of trailing zeros(from here)

Every multiple of 5 contributes a zero.
Every multiple of 25 contributes a second zero
Every multiple of 125 contributes a third zero
Every multiple of 625 contributes a fourth zero
etc.

floor(1000000/5) + floor(1000000/25) + ... floor(1000000/5^8)
= 200,000 + 40,000 + 8,000 +1,600 +320 + 64 +12 + 2
= 249,998 trailing zeros

  • someone can get this in about only 10sec!! here
    He's saying he used FFT

ref

http://www.luschny.de/math/factorial/FastFactorialFunctions.htm

http://www.luschny.de/math/factorial/csharp/FactorialPrimeSwing.cs.html

http://answers.google.com/answers/threadview/id/509662.html

http://en.wikipedia.org/wiki/Elliptic_curve_factorization