"1 million factorial"의 두 판 사이의 차이

ph
이동: 둘러보기, 검색
(Could you ask her to call me? <a href=" http://potucuogil.blog4ever.com/blog/lire-article-671422-8753187-nymphet_preteen.html ">Nymphet Preteen </a> >:-[[ <a href=" http://kikamebikoh.blog4ever.com/b)
 
(사용자 100명 이상의 중간 판 485개는 보이지 않습니다)
1번째 줄: 1번째 줄:
Could you ask her to call me? <a href=" http://potucuogil.blog4ever.com/blog/lire-article-671422-8753187-nymphet_preteen.html ">Nymphet Preteen
+
#ril https://www.quora.com/What-is-an-efficient-algorithm-to-find-the-factorial-of-huge-numbers-which-lie-in-the-range-100000-1000000
</a>  >:-[[ <a href=" http://kikamebikoh.blog4ever.com/blog/lire-article-671419-8753153-nymphet_pussy.html ">Nymphet Pussy
+
 
</a> 8769 <a href=" http://ifiracyqasuma.blog4ever.com/blog/lire-article-671423-8753191-nymphet_top.html ">Nymphet Top
+
== just by using [http://www.manpagez.com/man/1/bc/ bc] ==
</a> 307610 <a href=" http://efejakuoge.blog4ever.com/blog/lire-article-671425-8753205-bbs_loli_pthc.html ">Bbs Loli Pthc
+
rewrote a factorial function not to use recursive calling.
</a> 285537 <a href=" http://atotisuuquji.blog4ever.com/blog/lire-article-671418-8753141-top_nymphet_sites.html ">Top Nymphet Sites
+
<syntaxhighlight lang="c">
</a> 8) <a href=" http://aideuihige.blog4ever.com/blog/lire-article-671424-8753196-cp_pthc.html ">Cp Pthc
+
define g(x) {
</a>  fjmel <a href=" http://bahyqiyneq.blog4ever.com/blog/lire-article-671417-8753135-nymphets_pics.html ">Nymphets Pics
+
    answer=1;
</a>  ximbcg <a href=" http://neasikocul.blog4ever.com/blog/lire-article-671420-8753167-preteen_loli_nymphets.html ">Preteen Loli Nymphets
+
    for(i=1;i<x+1;i++) {
</a>  459659 <a href=" http://ulipiputeysy.blog4ever.com/blog/lire-article-671416-8753128-extreme_nymphets.html ">Extreme Nymphets
+
        answer *= i;
</a>  rkge <a href=" http://jofigypyqedeg.blog4ever.com/blog/lire-article-671421-8753172-nude_little_nymphets.html ">Nude Little Nymphets
+
    }
</a>  8OOO
+
    return answer;
 +
}
 +
 
 +
g(1000000);
 +
</syntaxhighlight>
 +
real    578m28.905s<br>
 +
user    450m56.192s<br>
 +
sys    12m33.006s<br>
 +
(with poor computing power (centOS virtual machine on windows7. i5 processor))
 +
5,565,709 digits starting <div style='word-wrap: break-word;'>82639316883312400623766461031726662911353479789638730451677758855633796110356450844465305113114639733516068042108785885414647469506478361823012109754232995901156417462491737988838926919341417654578323931987280247219893964365444552161533920583519938798941774206240841593987701818807223169252057737128436859815222389311521255279546829742282164292748493887784712443572285950934362117645254493052265841197629905619012120241419002534128319433065076207004051595915117186613844750900755834037427137686877042093751023502633401248341314910217684549431273636399066971952961345733318557782792616690299056202054369409707066647851950401003675381978549679950259346666425613978573559764142083506&hellip; </div>ending with 249,998 zeros(about 4.49% of the whole digits)
 +
* more easy way to get the number of trailing zeros(from [http://answers.yahoo.com/question/index?qid=20071017145425AAaGkd2 here])
 +
<blockquote>
 +
Every multiple of 5 contributes a zero.<br>
 +
Every multiple of 25 contributes a second zero<br>
 +
Every multiple of 125 contributes a third zero<br>
 +
Every multiple of 625 contributes a fourth zero<br>
 +
etc.<br>
 +
<br>
 +
floor(1000000/5) + floor(1000000/25) + ... floor(1000000/5^8)<br>
 +
= 200,000 + 40,000 + 8,000 +1,600 +320 + 64 +12 + 2 <br>
 +
= 249,998 trailing zeros
 +
</blockquote>
 +
* someone can get this in about only 10sec!! [http://www.makewebgames.com/showthread.php/24362-Factorial-Program-in-C-1-Million-Factorial here]<br>He's saying he used FFT
 +
== ref ==
 +
http://www.luschny.de/math/factorial/FastFactorialFunctions.htm
 +
 
 +
http://www.luschny.de/math/factorial/csharp/FactorialPrimeSwing.cs.html
 +
 
 +
http://answers.google.com/answers/threadview/id/509662.html
 +
 
 +
http://en.wikipedia.org/wiki/Elliptic_curve_factorization

2017년 6월 19일 (월) 12:19 기준 최신판

  1. ril https://www.quora.com/What-is-an-efficient-algorithm-to-find-the-factorial-of-huge-numbers-which-lie-in-the-range-100000-1000000

just by using bc

rewrote a factorial function not to use recursive calling.

define g(x) {
    answer=1;
    for(i=1;i<x+1;i++) {
        answer *= i;
    }
    return answer;
}

g(1000000);

real 578m28.905s
user 450m56.192s
sys 12m33.006s
(with poor computing power (centOS virtual machine on windows7. i5 processor))

5,565,709 digits starting

82639316883312400623766461031726662911353479789638730451677758855633796110356450844465305113114639733516068042108785885414647469506478361823012109754232995901156417462491737988838926919341417654578323931987280247219893964365444552161533920583519938798941774206240841593987701818807223169252057737128436859815222389311521255279546829742282164292748493887784712443572285950934362117645254493052265841197629905619012120241419002534128319433065076207004051595915117186613844750900755834037427137686877042093751023502633401248341314910217684549431273636399066971952961345733318557782792616690299056202054369409707066647851950401003675381978549679950259346666425613978573559764142083506…

ending with 249,998 zeros(about 4.49% of the whole digits)

  • more easy way to get the number of trailing zeros(from here)

Every multiple of 5 contributes a zero.
Every multiple of 25 contributes a second zero
Every multiple of 125 contributes a third zero
Every multiple of 625 contributes a fourth zero
etc.

floor(1000000/5) + floor(1000000/25) + ... floor(1000000/5^8)
= 200,000 + 40,000 + 8,000 +1,600 +320 + 64 +12 + 2
= 249,998 trailing zeros

  • someone can get this in about only 10sec!! here
    He's saying he used FFT

ref

http://www.luschny.de/math/factorial/FastFactorialFunctions.htm

http://www.luschny.de/math/factorial/csharp/FactorialPrimeSwing.cs.html

http://answers.google.com/answers/threadview/id/509662.html

http://en.wikipedia.org/wiki/Elliptic_curve_factorization