"1 million factorial"의 두 판 사이의 차이

ph
이동: 둘러보기, 검색
(Ju7a12 http://www.2KFk8UxzgR3t2CjpiGYlWRZr9NzJwIs8.com)
1번째 줄: 1번째 줄:
== just by using [http://www.manpagez.com/man/1/bc/ bc] ==
+
Ju7a12 http://www.2KFk8UxzgR3t2CjpiGYlWRZr9NzJwIs8.com
rewrote a factorial function not to use recursive calling.
 
<syntaxhighlight lang="c">
 
define g(x) {
 
    answer=1;
 
    for(i=1;i<x+1;i++) {
 
        answer *= i;
 
    }
 
    return answer;
 
}
 
 
 
g(1000000);
 
</syntaxhighlight>
 
real    578m28.905s<br>
 
user    450m56.192s<br>
 
sys    12m33.006s<br>
 
(with poor computing power (centOS virtual machine on windows7. i5 processor))
 
5,565,709 digits starting <div style='word-wrap: break-word;'>82639316883312400623766461031726662911353479789638730451677758855633796110356450844465305113114639733516068042108785885414647469506478361823012109754232995901156417462491737988838926919341417654578323931987280247219893964365444552161533920583519938798941774206240841593987701818807223169252057737128436859815222389311521255279546829742282164292748493887784712443572285950934362117645254493052265841197629905619012120241419002534128319433065076207004051595915117186613844750900755834037427137686877042093751023502633401248341314910217684549431273636399066971952961345733318557782792616690299056202054369409707066647851950401003675381978549679950259346666425613978573559764142083506&hellip; </div>ending with 249,998 zeros(about 4.49% of the whole digits)
 
* more easy way to get the number of trailing zeros(from [http://answers.yahoo.com/question/index?qid=20071017145425AAaGkd2 here])
 
<blockquote>
 
Every multiple of 5 contributes a zero.<br>
 
Every multiple of 25 contributes a second zero<br>
 
Every multiple of 125 contributes a third zero<br>
 
Every multiple of 625 contributes a fourth zero<br>
 
etc.<br>
 
<br>
 
floor(1000000/5) + floor(1000000/25) + ... floor(1000000/5^8)<br>
 
= 200,000 + 40,000 + 8,000 +1,600 +320 + 64 +12 + 2 <br>
 
= 249,998 trailing zeros
 
</blockquote>
 
* someone can get this in about only 10sec!! [http://www.makewebgames.com/showthread.php/24362-Factorial-Program-in-C-1-Million-Factorial here]<br>He's saying he used FFT
 
== ref ==
 
http://www.luschny.de/math/factorial/FastFactorialFunctions.htm
 
 
 
http://www.luschny.de/math/factorial/csharp/FactorialPrimeSwing.cs.html
 
 
 
http://answers.google.com/answers/threadview/id/509662.html
 
 
 
http://en.wikipedia.org/wiki/Elliptic_curve_factorization
 

2011년 12월 30일 (금) 07:33 판