"Generative Models"의 두 판 사이의 차이

ph
이동: 둘러보기, 검색
3번째 줄: 3번째 줄:
 
* [https://github.com/soumith/ganhacks How to Train a GAN? Tips and tricks to make GANs work]
 
* [https://github.com/soumith/ganhacks How to Train a GAN? Tips and tricks to make GANs work]
 
* [https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f Generative Adversarial Networks (GANs) in 50 lines of code (PyTorch)]
 
* [https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f Generative Adversarial Networks (GANs) in 50 lines of code (PyTorch)]
 +
** real/fake 두 데이터 셋이 있어야 한다. D를 먼저 훈련시키고 다음에 G를 훈련시킨다.
  
 
=VAE=
 
=VAE=

2017년 5월 4일 (목) 14:18 판

GAN

VAE

  • http://kvfrans.com/variational-autoencoders-explained/
  • autoencoder와 동일하나 latent vector를 생성할 때 (unit) gaussian으로만 생성하도록 constraint를 줌. 그래서 unit gaussian random variable로부터 generate.
  • In practice, there's a tradeoff between how accurate our network can be and how close its latent variables can match the unit gaussian distribution.
  • latent vector를 바로 만들지도 않고 mean, std만 만들어낸다.
  • we can compare generated images directly to the originals, which is not possible when using a GAN.
  • VAE in tensorflow

GAN, VAE, pixel-rnn (by OpenAI)

https://blog.openai.com/generative-models/