"Hermitian Matrix"의 두 판 사이의 차이

ph
이동: 둘러보기, 검색
(새 문서: = self-adjoint '''complex square matrix that is equal to its own conjugate transpose''' so, $$a_{ij} = \overline{a_{ji}} \quad \text{or} \quad A = \overline {A^\text{T}}$$)
 
잔글
6번째 줄: 6번째 줄:
  
 
$$a_{ij} = \overline{a_{ji}} \quad \text{or} \quad A = \overline {A^\text{T}}$$
 
$$a_{ij} = \overline{a_{ji}} \quad \text{or} \quad A = \overline {A^\text{T}}$$
 +
 +
example: \(
 +
\begin{bmatrix}
 +
2 & 2+i & 4 \\
 +
2-i & 3 & i \\
 +
4 & -i & 1 \\
 +
\end{bmatrix}
 +
\)

2017년 6월 26일 (월) 01:28 판

= self-adjoint

complex square matrix that is equal to its own conjugate transpose

so,

$$a_{ij} = \overline{a_{ji}} \quad \text{or} \quad A = \overline {A^\text{T}}$$

example: \( \begin{bmatrix} 2 & 2+i & 4 \\ 2-i & 3 & i \\ 4 & -i & 1 \\ \end{bmatrix} \)