"Machine Learning"의 두 판 사이의 차이
ph
								
												
				잔글 (→general)  | 
				잔글 (→general)  | 
				||
| 21번째 줄: | 21번째 줄: | ||
** [[dilated cnn]]  | ** [[dilated cnn]]  | ||
** [[pathnet]]  | ** [[pathnet]]  | ||
| + | ** [[ResNet]]  | ||
** [[Fast RCNN]]  | ** [[Fast RCNN]]  | ||
** [[Faster RCNN]]  | ** [[Faster RCNN]]  | ||
| − | ** [[  | + | ** [[R-FCN]]  | 
** [[GoogLeNet|Inception]] (GoogLeNet)  | ** [[GoogLeNet|Inception]] (GoogLeNet)  | ||
** [[fully convolutional networks]]  | ** [[fully convolutional networks]]  | ||
2017년 8월 7일 (월) 23:54 판
by themes
ril
- https://medium.com/technologymadeeasy/the-best-explanation-of-convolutional-neural-networks-on-the-internet-fbb8b1ad5df8
 - http://nmhkahn.github.io/Casestudy-CNN
 - https://stats.stackexchange.com/questions/205150/how-do-bottleneck-architectures-work-in-neural-networks
 - https://www.quora.com/What-exactly-is-the-degradation-problem-that-Deep-Residual-Networks-try-to-alleviate
 - dl with torch
 - bias 붙여버리면 inv는 어케 구하나? D=0되지 않나? 구할필요 없나?
 - pytorch examples
 - Identity Mappings in Deep Residual Networks arXiv:1603.05027
 - cutting edge deeplearning for coders
 
general
- CUDA기타설치
 - nets
 - Learning to learn by GD by GD
 - Generative Models (GAN, VAE, etc)
 - Batch Normalization
 - Mean Average Precision
 - Essential Cheat Sheets for Machine Learning and Deep Learning Engineers
 - What is surrogate loss?
 - Exponential Linear Unit
 - Neural net이 working하지 않는 37가지 이유
 - deconvolution
 - Sparse coding
 - MXNet Model Zoo