"Machine Learning"의 두 판 사이의 차이
ph
								
												
				잔글 (→general)  | 
				잔글 (→general)  | 
				||
| 14번째 줄: | 14번째 줄: | ||
* [https://arxiv.org/abs/1603.05027 Identity Mappings in Deep Residual Networks] arXiv:1603.05027  | * [https://arxiv.org/abs/1603.05027 Identity Mappings in Deep Residual Networks] arXiv:1603.05027  | ||
* [http://www.fast.ai/2017/07/28/deep-learning-part-two-launch/ cutting edge deeplearning for coders]  | * [http://www.fast.ai/2017/07/28/deep-learning-part-two-launch/ cutting edge deeplearning for coders]  | ||
| + | |||
| + | ==nets==  | ||
| + | * [[AlexNet]]  | ||
| + | * [[dilated cnn]]  | ||
| + | * [[pathnet]]  | ||
| + | * [[ResNet]]  | ||
| + | * [[Fast RCNN]]  | ||
| + | * [[Faster RCNN]]  | ||
| + | * [[R-FCN]]  | ||
| + | * [[GoogLeNet|Inception]] (GoogLeNet)  | ||
| + | * [[fully convolutional networks]]  | ||
| + | * [[FractalNets]]  | ||
| + | * [[highway networks]]  | ||
| + | * [[Memory networks]]  | ||
| + | * [[DenseNet]]  | ||
| + | * [[Network in Network|NIN]]  | ||
| + | * [[Deeply Supervised Network|DSN]]  | ||
| + | * [[Ladder Networks]]  | ||
| + | * [[Deeply-Fused Nets|DFNs]]  | ||
| + | * [[YOLO]]  | ||
==general==  | ==general==  | ||
* [[CUDA기타설치]]  | * [[CUDA기타설치]]  | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
* [[Learning to learn by GD by GD]]  | * [[Learning to learn by GD by GD]]  | ||
* [[Generative Models]] (GAN, VAE, etc)  | * [[Generative Models]] (GAN, VAE, etc)  | ||
2017년 8월 8일 (화) 00:11 판
by themes
ril
- https://medium.com/technologymadeeasy/the-best-explanation-of-convolutional-neural-networks-on-the-internet-fbb8b1ad5df8
 - http://nmhkahn.github.io/Casestudy-CNN
 - https://stats.stackexchange.com/questions/205150/how-do-bottleneck-architectures-work-in-neural-networks
 - https://www.quora.com/What-exactly-is-the-degradation-problem-that-Deep-Residual-Networks-try-to-alleviate
 - dl with torch
 - bias 붙여버리면 inv는 어케 구하나? D=0되지 않나? 구할필요 없나?
 - pytorch examples
 - Identity Mappings in Deep Residual Networks arXiv:1603.05027
 - cutting edge deeplearning for coders
 
nets
- AlexNet
 - dilated cnn
 - pathnet
 - ResNet
 - Fast RCNN
 - Faster RCNN
 - R-FCN
 - Inception (GoogLeNet)
 - fully convolutional networks
 - FractalNets
 - highway networks
 - Memory networks
 - DenseNet
 - NIN
 - DSN
 - Ladder Networks
 - DFNs
 - YOLO
 
general
- CUDA기타설치
 - Learning to learn by GD by GD
 - Generative Models (GAN, VAE, etc)
 - Batch Normalization
 - Mean Average Precision
 - Essential Cheat Sheets for Machine Learning and Deep Learning Engineers
 - What is surrogate loss?
 - Exponential Linear Unit
 - Neural net이 working하지 않는 37가지 이유
 - deconvolution
 - Sparse coding
 - MXNet Model Zoo