"1.1 Overview of Hyperbolic Partial Differential Equations"의 두 판 사이의 차이

ph
이동: 둘러보기, 검색
잔글
4번째 줄: 4번째 줄:
 
=Overview of Hyperbolic Partial Differential Equations=
 
=Overview of Hyperbolic Partial Differential Equations=
 
==The One-Way WaveEquation==
 
==The One-Way WaveEquation==
$$u_t + au_x = 0$$
+
$$ \begin{equation} u_t + au_x = 0 \end{equation}$$
 
solution:
 
solution:
$$ u(t,x) = u_0 ( x - at) $$
+
$$ \begin{equation} u(t,x) = u_0 ( x - at) \end{equation}$$
 +
\((t,x\) plane에서 \(x-at\)가 상수로 유지되는 라인을 characteristics라고 부른다. \(a\)는 the speed of propagation along the characteristic.
 +
 
 +
One-way wave eq.의 solution은 형태의 변형 없이 speed \(a\)로 진행하는 wave이다.
 +
 
 +
식(2)는 미분가능성을 요하지 않는다.

2017년 8월 11일 (금) 18:46 판

The important concepts of convergence, consistency, and stability are presented and shown to be related by the Lax-Richtmyer equivalence theorem. The chapter concludes with a discussion of the Courant-Friedrichs-Lewy condition and related topics.

Overview of Hyperbolic Partial Differential Equations

The One-Way WaveEquation

$$ \begin{equation} u_t + au_x = 0 \end{equation}$$ solution: $$ \begin{equation} u(t,x) = u_0 ( x - at) \end{equation}$$ \((t,x\) plane에서 \(x-at\)가 상수로 유지되는 라인을 characteristics라고 부른다. \(a\)는 the speed of propagation along the characteristic.

One-way wave eq.의 solution은 형태의 변형 없이 speed \(a\)로 진행하는 wave이다.

식(2)는 미분가능성을 요하지 않는다.