"0830 commoncode"의 두 판 사이의 차이

ph
이동: 둘러보기, 검색
(새 문서: $$ \frac{(a+b+c+\cdots+z)!}{a!b!c!\cdots z!} \pmod p$$ <pre> p = int(1e9)+7 def anmodp(a, n): if n==1: return a%p tmp = anmodp(a, n/2) if n%2==1: #odd re...)
 
잔글
1번째 줄: 1번째 줄:
$$ \frac{(a+b+c+\cdots+z)!}{a!b!c!\cdots z!} \pmod p$$
+
$$ \frac{(a+b+c+\cdots+z)!}{a!b!c!\cdots z!} \pmod p \text{ where } p \text{ is a prime}$$
  
 
<pre>
 
<pre>
p = int(1e9)+7
+
p = int(1e9)+7 #example. this is a prime number
 
def anmodp(a, n):
 
def anmodp(a, n):
 
     if n==1:
 
     if n==1:

2017년 8월 30일 (수) 17:54 판

$$ \frac{(a+b+c+\cdots+z)!}{a!b!c!\cdots z!} \pmod p \text{ where } p \text{ is a prime}$$

p = int(1e9)+7 #example. this is a prime number
def anmodp(a, n):
    if n==1:
        return a%p

    tmp = anmodp(a, n/2)
    if n%2==1: #odd
        return (a*(tmp**2))%p
    else:
        return (tmp**2)%p 

def fac(n):
    k = 1
    for i in range(2, n+1):
        k *= i
        k %= p
    return k

def invfac(n):
    return anmodp(fac(n), p-2) #euler totient

def comb(x): # arr
    s = sum(x)
    ans = fac(s)
    for i in x:
        ans *= invfac(i)
    return ans % p


blog comments powered by Disqus