Beta distribution
ph
\(\displaystyle x\in [0,1] \)일 때, (support[1]가 이렇게 주어지기 때문에, 확률분포로 쓸 수 있다.)
\(\Large \text{Beta}(\alpha, \beta) = f(x; \alpha, \beta) = \text{contant}\cdot x^{\alpha -1 }(1-x)^{\beta -1} \)
\(\Large = \frac{1}{\text{B}(\alpha, \beta)} x^{\alpha -1 }(1-x)^{\beta -1} \)
B is beta function. (여기서는 normalizer역할)
hyperparameter \(\alpha, \beta\)를 주었을 때 위의 pdf를 가지는 분포가 beta분포.
conjugate prior probability distribution for the
- Bernoulli,
- binomial,
- negative binomial,
- geometric distributions.
shapes:[1]
- \(\alpha = \beta\)
- \(\alpha = \beta < 1 \)
U-shaped. (\(\alpha \neq \beta\)일 때도 \(\alpha < 1, \beta < 1\)이면 U-shaped) - \(\alpha = \beta = 1 \)
uniform [0,1] distribution - \(\alpha = \beta > 1 \)
unimodal[2]- \(\alpha = \beta = 2 \)
parabolic - \(\alpha = \beta > 2 \)
bell shaped
- \(\alpha = \beta = 2 \)
- \(\alpha = \beta < 1 \)
- \(\alpha \neq \beta\)
- \(\alpha = 1, \beta > 1\)
positively skewed.(right tail is long), strictly decreasing.- \(1 < \beta < 2\)
concave - \( \beta = 2 \)
straight line with slope -2 - \(2 < \beta \)
convex
- \(1 < \beta < 2\)
- \(\alpha = 1, \beta > 1\)