Collaborative Deep Learning for Recommender Systems

ph
Admin (토론 | 기여)님의 2017년 6월 9일 (금) 12:09 판 (새 문서: * CF는 sparse할 때 약하다. CTR(Collaborative topic regression)이 등장. ** CF cannot be used for new products * hierarchical Bayesian model인 CDL(Collaborative Deep Learning)...)
(차이) ← 이전 판 | 최신판 (차이) | 다음 판 → (차이)
이동: 둘러보기, 검색
  • CF는 sparse할 때 약하다. CTR(Collaborative topic regression)이 등장.
    • CF cannot be used for new products
  • hierarchical Bayesian model인 CDL(Collaborative Deep Learning)을 제안한다.
    • deep representation learning은 dl로,
    • rating은 CF로.
  • CF의 단점때문에 보조정보(auxiliary information)을 이용하는 method 많이들씀
    1. loosely coupled
      • 보조정보 처리 후 CF에 넣음
    2. tightly coupled
      • the rating information can guide the learning of features
      • Collaborative topic regression (CTR) [1] is a recently proposed tightly coupled method. It is a probabilistic graphical model that seamlessly integrates a topic model, latent Dirichlet allocation (LDA) [2], and a model-based CF method, probabilistic matrix factorization (PMF) [3].
  • C. Wang and D. M. Blei. Collaborative topic modeling for recommending scientific articles. In KDD, pages 448–456, 2011.
  • D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet allocation. JMLR, 3:993–1022, 2003.
  • R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In NIPS, pages 1257–1264, 2007.