Bayesian Statistics in simple English

ph
Admin (토론 | 기여)님의 2017년 6월 13일 (화) 11:28 판
이동: 둘러보기, 검색

읽은 글은 Bayesian Statistics explained to Beginners in Simple English

baysian inference가 뭔가 찾아보다가 발견한 문서.(variational inference와는 어떻게 다른거지?)



1. Frequentist Statistics

2. The Inherent Flaws in Frequentist Statistics

여기 p-value랑 C.I.(confidence interval)나오는데, 이런 기본용어 설명이 여기가 기가 막히다. 이것도 따로 빼둔다.

3. Bayesian Statistics

3.1 Conditional Probability

Bayes theorem is built on top of conditional probability and lies in the heart of Bayesian Inference.

3.2 Bayes Theorem

\(\Large P(A|B) = \frac{\Large P(B|A_i) P(A_i) }{\Large \sum_{i=1}^n P(B|A_i)P(A_i)} \)

4. Bayesian Inference

prior × liklihood = posterior × evidence

cf. Variational Inference (pdf)

4.1. Bernoulli likelihood function

\(\Large P(y|θ)=θ^y(1-θ)^{1-y}\)

\( y =\{0, 1\}, θ = (0, 1) \)

\(y=1\) means 'head of a coin', \(θ\) means fairness of a coin.

so,

$$ P(y_1, y_2, ... , y_n | θ) = \prod_1^n P(y_i|θ) $$ $$ P(z,N|θ) = θ^z (1-θ)^{N-z} $$ where z is a number of heads and N is a number of flips.


4.2. Prior Belief Distribution