Beta distribution

ph
Admin (토론 | 기여)님의 2017년 6월 14일 (수) 22:43 판 (새 문서: \(\displaystyle x\in [0,1] \)일 때, \(\Large \text{Beta}(\alpha, \beta) = f(x; \alpha, \beta) = \text{contant}\cdot x^{\alpha -1 }(1-x)^{\beta -1} \) \(\Large = \frac{1}{\text{B}(...)
(차이) ← 이전 판 | 최신판 (차이) | 다음 판 → (차이)
이동: 둘러보기, 검색

\(\displaystyle x\in [0,1] \)일 때,

\(\Large \text{Beta}(\alpha, \beta) = f(x; \alpha, \beta) = \text{contant}\cdot x^{\alpha -1 }(1-x)^{\beta -1} \)

\(\Large = \frac{1}{\text{B}(\alpha, \beta)} x^{\alpha -1 }(1-x)^{\beta -1} \)

B is beta function. (여기서는 normalizer역할)

hyperparameter \(\alpha, \beta\)를 주었을 때 위의 pdf를 가지는 분포가 beta분포.