Generative Models

ph
Admin (토론 | 기여)님의 2017년 7월 27일 (목) 11:29 판 (→‎GAN)
(차이) ← 이전 판 | 최신판 (차이) | 다음 판 → (차이)
이동: 둘러보기, 검색

GAN

VAE

  • http://kvfrans.com/variational-autoencoders-explained/
    • autoencoder와 동일하나 latent vector를 생성할 때 (unit) gaussian으로만 생성하도록 constraint를 줌. 그래서 unit gaussian random variable로부터 generate.
    • In practice, there's a tradeoff between how accurate our network can be and how close its latent variables can match the unit gaussian distribution.
    • latent vector를 바로 만들지도 않고 mean, std만 만들어낸다.
    • we can compare generated images directly to the originals, which is not possible when using a GAN.
  • VAE in tensorflow

etc

GAN, VAE, pixel-rnn (by OpenAI)

https://blog.openai.com/generative-models/

GAN vs VAE

https://www.reddit.com/r/MachineLearning/comments/4r3pjy/variational_autoencoders_vae_vs_generative/