Beta distribution
ph
\(\displaystyle x\in [0,1] \)일 때, (support[1]가 이렇게 주어지기 때문에, 확률분포로 쓸 수 있다.)
\(\Large \text{Beta}(\alpha, \beta) = f(x; \alpha, \beta) = \text{contant}\cdot x^{\alpha -1 }(1-x)^{\beta -1} \)
\(\Large = \frac{1}{\text{B}(\alpha, \beta)} x^{\alpha -1 }(1-x)^{\beta -1} \)
B is beta function. (여기서는 normalizer역할)
hyperparameter \(\alpha, \beta\)를 주었을 때 위의 pdf를 가지는 분포가 beta분포.
conjugate prior[2] probability distribution for the
- Bernoulli,
- binomial,
- negative binomial,
- geometric distributions.
shapes
위키에 그림이 많은데 정말 다 주옥같다. 구경하기도 좋고 ㅎㅎ 이거 누가 gif animation으로 만들어주면 좋겠음 ㅎㅎㅎ
- \(\alpha = \beta\)
- \(\alpha = \beta < 1 \)
U-shaped. (\(\alpha \neq \beta\)일 때도 \(\alpha < 1, \beta < 1\)이면 U-shaped) - \(\alpha = \beta = 1 \)
uniform [0,1] distribution - \(\alpha = \beta > 1 \)
unimodal[3]- \(\alpha = \beta = 2 \)
parabolic - \(\alpha = \beta > 2 \)
bell shaped
- \(\alpha = \beta = 2 \)
- \(\alpha = \beta < 1 \)
- \(\alpha \neq \beta\)
- \(\alpha = 1, \beta > 1\)
positively skewed.(right tail is long), strictly decreasing.- \(1 < \beta < 2\)
concave - \( \beta = 2 \)
straight line with slope -2 - \(2 < \beta \)
convex
- \(1 < \beta < 2\)
- \(\alpha = 1, \beta > 1\)
- ↑ \(\operatorname {supp} (f)=\{x\in X\,|\,f(x)\neq 0\}\) [1]
- ↑ https://en.wikipedia.org/wiki/Conjugate_prior
- ↑ https://en.wikipedia.org/wiki/Unimodality