"Gram matrix"의 두 판 사이의 차이

ph
이동: 둘러보기, 검색
잔글
잔글
 
10번째 줄: 10번째 줄:
  
 
(b) 는 \( x^TGx = x^TV^TVx = (Vx)^T(Vx) \ge 0 \) 로 하면 될것 같고, (c)는 \(x^TGx =0\)인 상황에서 \(V\)가 nonsingular하면 모순임을 이용하면 될 것 같다.
 
(b) 는 \( x^TGx = x^TV^TVx = (Vx)^T(Vx) \ge 0 \) 로 하면 될것 같고, (c)는 \(x^TGx =0\)인 상황에서 \(V\)가 nonsingular하면 모순임을 이용하면 될 것 같다.
 +
 +
 +
Gram determinant는 [https://en.wikipedia.org/wiki/Gramian_matrix#Gram_determinant 위키] 참조. <br />
 +
(주요 내용은 1) volume of perelloptope 2) exterior product : \(G(x_{1},\dots ,x_{n})=\|x_{1}\wedge \cdots \wedge x_{n}\|^{2}\). )
  
 
----
 
----

2017년 7월 10일 (월) 02:19 기준 최신판

Gram matrix \( G = V^T V\) where \(V\) is a matrix.(for finite-dimensional vectors with the usual Euclidean dot product) [1]

Horn & Johnson 2013[1], p. 441[2]
Theorem 7.2.10 Let \(\displaystyle v_{1},\ldots ,v_{m}\) be vectors in an inner product space V with inner product \(\displaystyle \langle {\cdot ,\cdot }\rangle \) and let \(\displaystyle G=[\langle {v_{j},v_{i}}\rangle ]_{i,j=1}^{m}\in M_{m}\). Then
(a) G is Hermitian and positive-semidefinite
(b) G is positive-definite if and only if the vectors \(\displaystyle v_{1},\ldots ,v_{m}\) are linearly-independent.
(c) \(\displaystyle \operatorname {rank} G=\dim \operatorname {span} \{v_{1},\ldots ,v_{m}\}\)


(b) 는 \( x^TGx = x^TV^TVx = (Vx)^T(Vx) \ge 0 \) 로 하면 될것 같고, (c)는 \(x^TGx =0\)인 상황에서 \(V\)가 nonsingular하면 모순임을 이용하면 될 것 같다.


Gram determinant는 위키 참조.
(주요 내용은 1) volume of perelloptope 2) exterior product : \(G(x_{1},\dots ,x_{n})=\|x_{1}\wedge \cdots \wedge x_{n}\|^{2}\). )


  1. Horn, Roger A.; Johnson, Charles R. (2013). "7.2 Characterizations and Properties". Matrix Analysis (Second Edition). Cambridge University Press. ISBN 978-0-521-83940-2.
  2. https://en.wikipedia.org/wiki/Gramian_matrix#cite_note-1